
Game Automation

© 2022 iXie Gaming

Whitepaper

- Vinay Chippa

02© iXie Gaming

Introduction
When we talk about game testing, every
successful game the key lies in bringing
flawless astonishing user experience.
The major difficulty is ensuring this
factor with the numerous platforms and
various device configurations available in
the market today. Why should we ensure
this? The answer is that, a significant
portion of revenues generated for all
major marketplaces are from gaming
industry. Here comes the absolute need
to automate these game components to
its most feasible level.

Examples
This is the case with TestComplete, where the script for clicking on a button looks
v

CustomerForm.ButtonOK.Click();
and entering text in a text control looks like
CustomerForm.edName.Text = ‘John’;

Challenges
Major challenges faced in mobile game
segment are that it is fiercely competi-
tive and short attention span from the
users. The user lifetime value is heavily
dependent on additional game content,
collaboration with the user etc., resulting
in various game updates. To support
these updates there will be several
application backend updates needed
over a period of time. This is what will
help recover the initial marketing
investments.

One of the main complaints about
automated UI tests is that they stop
working when you make major changes
to your game. There is some myth to this,
most modern testing tools work directly
with controls rather than being based
on-screen coordinates. They are much
more robust and don’t break as easily as
early UI testing tools.

Frameworks
When you contemplate automated
testing tools, it’s hard to imagine using
them for something like ad-hoc testing
for video games. In reality, test
automation is rarely used in video game
testing at all, we can think of a few used
cases in which you could use it for
data-driven testing if the game uses
databases or for certain regression tests.

But that doesn’t mean you can’t use test
automation for gameplay, it just might
now be the most effective way since
user interaction with a game is the most
important aspect of game that you will
need to test to. In recent past, the game
automation is taking its recognition with
evolution of different technologies.
Many such test automation frameworks
developed becoming a common
platform between the game
development practices and evolving
technologies to automate the game.

Another implementation is the
automation tools with AI logic where the
tool learns how to play the game. By
simulating every probable action and
monitoring the results from the applica-
tion backend / frontend UI and next
performable action depending on the
results identified in the background
application logs to the server. This will
help the AI logic to understand and
perform the action in the front end
accordingly. This way at least a most
common user path is automated.

03© iXie Gaming

Breakdown: Android Test Automation Frameworks

Robotium is an Android test
automation framework that fully
supports native and hybrid applications.
Robotium makes it easy to write
powerful and robust automatic lack-box
UI tests for Android applications. With
the support of Robotium, test case
developers can write function, system
and user acceptance test scenarios,
spanning multiple Android activities.

UIautomator, by Google, provides
an efficient way to test UIs. It creates
automated functional test cases that
can be executed against apps on real
Android devices and emulators. It
includes a viewer, which is a GUI tool to
scan and analyze the UI components of
an Android appand user acceptance test
scenarios, spanning multiple Android
activities.

Android

iOS

Mobile Web

Scripting
Language

Test Creation
Tools

Supported API
Levels

Community

Espresso, by Google, is a pretty new
test automation framework that got
open-sourced just last year, making it
available for developers and testers to
hammer out their UIs. Espresso has an
API that is small, predictable, and easy to
learn and built on top of the Android
instrumentation framework. You can
quickly write concise and reliable
Android UI tests with it.

Calabash is a cross-platform test
automation framework for Android &
iOS native and hybrid applications.
Calabash’s easy-to-understand syntax
enables even non-technical people to
create and execute automated
acceptance tests for apps on both of
these mobile platforms.

Yes

No

Yes(Android)

Java

Testroid
Recorder

All

Contributors

Yes

No

Limited to x, y
clicks

Java

UI Automator
Viewer

16 = >

Google

Yes

No

No

Java

Hierarchy
Viewer

8, 10, 15-19

Google

Yes

No

Yes
(Android & iOS)

Almost any

Appium.app

All

Active

Yes

Yes

Yes(Android)

Ruby

CLI

All

Pretty Quiet

Robotium UIautomator Espresso Appium Calabash

Comparison of test automation frameworks

04

Frequent releases are the nature of the gaming market:

The competitive gaming market mandates frequent game releases to the market on
the one hand and on the other hand games involve actual money bids it is of utmost
important to ensure highest standard of testing with full coverage of all OS.

Games tend to be on the lower end
of the spectrum, with more
frequent updates. The exceptions
are the casino games, which have a
longer time between updates,
presumably because they do not
change much. Apps that are updat-
ed less frequently are social media
apps like YouTube and Tumblr and
messaging apps like Viber and Kik
Messenger

1. Clash of Clans 2. Candy Crush Saga 3. Instagram 4. Pandora Radio 5. Facebook

6. Spotify Music 7. Twitter 8. Game of War - Fire Age 9. Hay Day

10. Farm Heros Saga 12. Boom Beach 13. Shazam 14. eBay 15. Tumblr

16. Viber 17. Youtube 18. Big Fish Casino - Free 19. Kik Messenger 20. Pet Rescue

21. Doubledown Casino - Free 22. Bibe 23. Facebook Messenger

24. Minecraft - Pocket Edition 25. Real Estate by Zillow

© iXie Gaming

0

15

30

45

60

Appium, in a nutshell, Appium is a mobile test automation framework (and tool) for
native, hybrid and mobile- web apps for iOS and Android. It uses JSONWireProtocol
internally to interact with iOS and Android apps using Selenium’s WebDriver. In fact,
Appium is a pretty good choice for both apps and games because, in many cases, apps
and games tend to be identical (or at least very similar) on platforms, Android and iOS -
and so the same test script can be applied to both. Another significant benefit of
Appium is that users can write tests using their favorite development tools, environment
and programming language, such as Java, Objective-C, JavaScript, PHP, Ruby, and Python
or C #, among many others.

Appium enables users to execute tests on mobile devices regardless of OS. This is possi-
ble because the Appium framework is basically a wrapper that translates Selenium’s
WebDriver commands to UIAutomation (iOS), UIautomator (Android, API level 17 or
higher) or Selendroid (Android, API level 16 or lower) commands, depending on the
device’s type.

 Average Number Of Days Between Their Version
Updates For 25 Top iOS Apps

05© iXie Gaming

Coming to Mobile games testing, a majority of parties think that manual testing is the
only effective way to move forward. The focus is towards identifying all the issues and
getting it fixed before the game is published. Integrating test automation into the
process focusing on every regression cycle and advancement can give considerable
amount of results providing a game ready for publishing. The fact being, manual testing
can’t promise a 100% bug free game. This is because of many factors: such as too
much effort, time, verification and validation are needed. This happens only in the
superficial part of the game leaving the application backend untested. To debug
the backend components, you will need a team of programmers. This is where test
automation can be implemented. It can deliver 24/7 without any of the manual efforts.
Test automation can deliver better test coverage and test results by getting deep into
the game application ensuring stability, compatibility (devices) and so on.

Above image brings us the information on how many different devices are available globally to perform adequate

test coverage

57
USA

141
International

40
Asia

59.2%
International

16.8%
USA

24.0 %
Asia

14
API Levels

14
Different

Resolutions

31
Android
Devices

06© iXie Gaming

Costs, Assets and Time to market
The test automation for mobile has been considered a critical factor for big mobile app
companies but for some reason it is often thought to be too expensive or difficult to
adopt for smaller companies. Probably due to historical reasons the cost factor is the
first consideration when deciding whether company wants to use automation or stick
with manual testing in their development projects. Regardless of if you select manual
and automated testing, you’ll need the following assets and resources – and those will
cost you money: Time, People, Infrastructure, Tools, and Training. Challengesthe game
application ensuring stability, compatibility (devices) and so on.

The primary challenge to automate testing for these games is the usage of OpenGL or
ActiveX by passing the OS level services. This leads to a problem - all the native mobile
test automation frameworks become useless with Mobile games. This limits us to use
only the X&Y clicks without much feedback or validation about the internal state of the
game.

Secondary challenge is performance, which is the key factor for great user experience
and can only be observed on real hardware. Frame rates do matter a lot, and the
richness in graphics on different mobile devices counts. Massive games come with
heavy binaries reaching up to 3GB which demands for heavy memory, GPU, Battery and
CPU. All the above needed to be considered for actual user experience. It should not to
be affected due to different hardware configurations. Majority of the games are inte-
grated with different hardware components like sensors, mic, speakers, camera, GPS
etc. The consistency of gameplay largely varies based on the quality of these compo-
nents in different mobile devices available in the market

Time

People

Infrastructure

Tools

Training

M
an

ua
l T

es
ti

ng
A

utom
ated Testing

07© iXie Gaming

For the past few years we have been working with major game publishers, testing their
games on various physical devices with wide variety of tools, practices, methods
resulting in huge a framework. Regardless of the game engine, the game developers use
a simple form of image recognition method. This is as simple as capturing a screenshot
and evaluating it automatically or manually while it can be fully automated gameplay.
The gameplay can be driven by the test script and output data stored as logs for further
analysis. By combining these 2 approaches, identifying certain graphical elements from
real-time screenshots and comparing those to pre-set graphical assets and progressing
through the game using the test script.

Black box testing approach using different test automation frameworks is evolving in
gaming industry. For example; Appium which is a cross-platform framework for android
and iOS devices gets the work done really well. The reason being; the games on both
these platforms work the same way. Appium bridges the gap between image
recognition and handling assets within the game. Appium is capable of many things -
from installing the builds to performing necessary actions to managing the test
automation sessions by becoming high level interface between the test scripts and
game. Combining this with OpenCV makes our work even easier by accessing the game
from outside and validating the screen buffer with its image library directing the
Appium script to perform action at X&Y co-ordinates. It can recognize images that are
stretched or at an angle. The Idea is to simplify writing the scripts, which basically
performs 2 tasks i.e. clipping the reference images and define the action or click when
the match is found in the screenshot. Complexity of scripts is reduced to a
major extent by this implementation.

Performance of an application using the device hardware to ensure the stability and latency w.r.t its active state

08© iXie Gaming

##

Example script that tests the basic game play

##

Works on multiple platforms irrespective any device attached to the machine.

##

//Launching the application

public class PropertyFile

{

WebDriver driver;

public void setup() throws FindFailed, InterruptedException, IOException {

File app = new File("E:/apks/slots.apk");

DesiredCapabilities capabilities = new DesiredCapabilities();

capabilities.setCapability("noReset", "true");

capabilities.setCapability("fullReset", "false");

capabilities.setCapability("AutomationName", "Appium");

capabilities.setCapability("platformName", "Android");

capabilities.setCapability("platformVersion", "6.0.1");

capabilities.setCapability("deviceName", "Galaxy S6");

capabilities.setCapability("newCommandTimeout", 2000);

capabilities.setCapability("app", app);

capabilities.setCapability("appPackage", "com.package_name");

capabilities.setCapability("appActivity", "com.activity_name");

driver = new AndroidDriver(new URL("http://127.0.0.1:4723/wd/hub"), capabilities);

}

}

Example: We have used Appium to automate the most
popular slots game

Example: We have used Appium to automate the most popular slots game

09© iXie Gaming

// Lobby 1 Settings button and build check

//@Test(priority = 1)

public void lobby1Testcase() throws InterruptedException, FindFailed, IOException {

Screen sc = new Screen();

gc.motdHandle();

// Waiting for Settings Button on Home Screen to click

sc.wait("D:/ project/New Images/Home_screen/Home_setting.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Home_screen/Home_setting.png",

sc),

"Home_setting.png not found");

// Clicking Settings Button

sc.find("D:/ project/New Images/Home_screen/Home_setting.png").click();

// Waiting for Settings Close Button on Home Screen to click

sc.wait("D:/ project/New Images/Home_screen/Setting_Closing.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Home_screen/Setting_Closing.png",

sc),

"Setting_Closing.png not found");

// Clicking Settings Close Button

sc.find("D:/ project/New Images/Home_screen/Setting_Closing.png").click();

// Waiting for Settings Button on Home Screen to click

sc.wait("D:/ project/New Images/Home_screen/Home_setting.png", waitTime).click();

Assert.assertTrue(exists("D:/ project/New Images/Home_screen/Home_setting.png",

sc),

"Home_setting.png not found");

// Clicking Settings Button

sc.find("D:/ project/New Images/Home_screen/Home_setting.png").click();

Thread.sleep(3000);

// Waiting for Sound Option

Settings st = new Settings();

st.MoveMouseDelay = 1;

sc.wait("D:/ project/New Images/Home_screen/Soun_click.png", waitTime);

sc.dragDrop("D:/ project/New Images/Home_screen/Soun_click.png",

"D:/ project/New Images/Home_screen/dragDropDest.png");

Thread.sleep(2000);

10© iXie Gaming

// Waiting for about option and click

st.MoveMouseDelay = 0;

sc.wait("D:/ project/New Images/Home_screen/home_about.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Home_screen/home_about.png", sc),

"home_about.png not found");

sc.find("D:/ project/New Images/Home_screen/home_about.png").click();

Thread.sleep(5000);

// Waiting for about page to load

sc.wait("D:/ project/New Images/Home_screen/about.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Home_screen/about.png", sc),

"about.png not

found");

// Taking screen short for build

gc.takeSnapBuild();

// Waiting for about close option and click

sc.wait("D:/ project/New Images/Home_screen/about_close.png", waitTime).click();

}

// Room 1 checks

//@Test(priority = 2)

public void room1TestCase() throws InterruptedException, FindFailed, IOException {

Screen sc = new Screen();

sc.wait("D:/ project/New Images/Room1/room1_reference.png", waitTime);

// Setting room1 region

Location room1RegionLoc = sc.find("D:/ project/New Images/Room1/

room1_reference.png").getCenter();

Region room1Region = sc.newRegion(room1RegionLoc, 600, 600);

// Waiting for home page to load

sc.wait("D:/ project/New Images/Room1/Room1_refrence.png", waitTime);

room1Region.wait("D:/ project/New Images/Room1/Room1_entry", waitTime);

// Clicking room 1 entry button

room1Region.find("D:/ project/New Images/Room1/Room1_entry").click();

Thread.sleep(2000);

// handling addon

gc.addonHandle();

11© iXie Gaming

// Spinning inside room

sc.wait("D:/ project/New Images/Room1/Spin_room1.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Room1/Spin_room1.png", sc),

"Spin_room1.png not found");

sc.find("D:/ project/New Images/Room1/Spin_room1.png").click();

Thread.sleep(5000);

// gc.progresion();

// Room1 settings

sc.wait("D:/ project/New Images/Room1/Room1_setting.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Room1/Room1_setting.png", sc),

"Room1_setting.png not found");

sc.find("D:/ project/New Images/Room1/Room1_setting.png").click();

// Room1 paytable

sc.wait("D:/ project/New Images/Room1/Paytable_room1.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Room1/Paytable_room1.png", sc),

"Paytable_room1.png not found");

sc.find("D:/ project/New Images/Room1/Paytable_room1.png").right(2000)

.find("D:/ project/New Images/Room1/click_paytable.png").click();

Thread.sleep(3000);

// room1 settings close

sc.wait("D:/ project/New Images/Room1/Room1_setting_close.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Room1/Room1_setting_close.png",

sc),

"Room1_setting_close.png not found");

sc.find("D:/ project/New Images/Room1/Room1_setting_close.png").click();

// return to lobby

sc.wait("D:/ project/New Images/Room1/Return_home.png", waitTime);

Assert.assertTrue(exists("D:/ project/New Images/Room1/Return_home.png", sc),

"Return_home.png not found");

sc.find("D:/ project/New Images/Room1/Return_home.png").click();

Thread.sleep(5000);

gc.motdHandle();

}

presented with a single Android View,
rather than a layout with elements.

To work around this problem, I decided to
implement OpenCV image recognition to
enable finding elements on the screen
using screenshots. To achieve that, we
used SikuliX API. Due to the nature of
SikuliX API, the flow isn’t as straightfor-
ward as one would expect. You can’t do a
direct comparison against the device;
you need to run a remote comparison
against a screenshot of the device using
a simulator.

Code Flow
The flow in above code is as follows:
• Take a screenshot of the device
• Compare the image of the element you
want to find to the screenshot of the
device
• If match is found, return coordinates of
the center of the element
• Use those coordinates to tap on the
screen
• The main methods in the OCR class:

• clickByImage - Main method
you should be using. It allows you to find
and tap on the element on the screen by
passing in the path to the screenshot of
the element. It aggregates all the conve-
nience method into a single, easy to use
method.

• takeScreenshot -
convenience method that takes a
screenshot and returns a Buffered
Image for further processing.

• getCoords - requires screenshot
as buffered Image and the path to the
image of an element we’re looking for. If
match is found, the coordinates are
returned in a Point2D object.

12© iXie Gaming

Architecture used

Tasks handled by the
Framework:
•Screen Capturing of ‘About’ dialog box
for build version check
• Screen Capture for test fail instances
• One level-up Progression
• Handling Add-On's dialogs
• Handling pop-up dialogs
• Capturing the pop-up dialogs appeared
during the game progression for manual
reference after the test execution is
completed. This is to validate desired
pop-up dialogs are triggered during the
gameplay
• Reporting the test NG report Via email

Using Image Recognition
What we just went through in Appium +
Sikuli example was the basic image
recognition flow for enabling mobile
game to be tested on real devices,
regardless of any OS platform (Android
and iOS). Here we had a limitation to
recognize the elements as the applica-
tion was developed in flash. In certain
apps and majority of games, you will not
be able to access the elements on the
screen. When you load the app, and open
the Appium GUI, you will be

At the end of the day though, no automa-
tion framework is as adaptable as a real
tester, so it usually requires substantial
buy-in from development teams.
The earlier you can start working with a
specific team, the better the results
you’ll likely see. With each success you
gain traction to change the culture. In
some cases, Sony is working with
developers to design in-test frameworks
before development even starts

Future of game automation
The world's oldest board game still has a few
moves to play. Go, a game of strategy and
instinct considered more difficult to master
than chess, was created roughly in the same era
as the written word. The game is uniquely
human - at least, it used to be. Last year, a
computer program called AlphaGo defeated an
internationally ranked professional player

Between the physical and mental spaces, there
is another reality in need of double control.
Augmented reality, or artificial reality, bridges the
gap of actuality and imagination. Pokémon GO is
a prime example, as people navigate the physi-
cal world to find fictional creatures with only
experience as a guide. The parameters and goals
shift with each new exposure AI researchers at
DeepMind (acquired by Google in 2014) have
developed an intelligent software engine that
can automatically learn to play and finish all of
the Atari games by itself. You just need to feed-in
the game and the rest will be done by the
system. The machine built by the DeepMind
team recently won one of the toughest Chinese
games, AlphaGO, against world champion, Lee
Sedol, by a score of 4-1. In another breakthrough,
researchers from the University of Texas at
Arlington (UTA) created a game engine that can
empower a computer to play any game, for
example Super Mario, without any
human interference. The paper was
published in the MIT Journal.

13© iXie Gaming

• elementExists - returns true if
element is found on the screen.

• waitUntilImageExists -
Explicit wait using Image Recognition.
Waits for specified duration until a
match for the specified image is found.

• Limitations - Cannot validate the
number format in the screen
• Cannot validate particular text
• Not possible to compare if there are any
minor changes in preloaded screenshots
taken from Sikuli
• Test data such as image objects need
to be preloaded resulting in rework in any
design UI design changes
• Limited to single user path or gameplay
but not able to simulate all the probable
user paths
• Multiple tests on different devices at a
time will not be possible while using
image recognition method, this is possi-
ble only if we will be able to identify the
elements within the UI using selenium
grid

Current areas of automation
being viable
Game automation has entered gaming
industry at a very few stages of game
testing because of its limitations in
simulating all the possible user paths.
It’s being helpful in performing basic level
of testing like smoke testing, build verifi-
cation tests, basic level progression,
MMO grinding, support and maintenance,
load testing etc. Because of the cost
incurred in framework maintenance, as
and when there is a design change, it has
taken more time to develop the frame-
work instead of manual testing. Game
automation has taken remarkable
changes and improving the contributions
with evolving technology.

Nevertheless, the potential benefits of automation are huge. For example, Unity’s ability
to develop and release across so many platforms is almost solely attributable to
automation. It enables them to more easily verify features across 15 to 20 platforms
with a massive number of test cases run on every single commit.

Quite simply, automation is the latest, and potentially greatest, tool in the QA arsenal.
Any mid-sized developer would be well advised to invest time in it as soon as possible

14© iXie Gaming

14© iXie Gaming

USA

Cupertino | Princeton
Toll-free: +1-888-207-5969

INDIA

Chennai | Bengaluru | Mumbai | Hyderabad
Toll-free: 1800-123-1191

SINGAPOREUK

Singapore
Ph: +65 6812 7888

London
Ph: +44 1420300014

www.ixiegaming.com | info@ixiegaming.com

https://www.facebook.com/ixiegaming/
https://twitter.com/ixiegaming?lang=en
https://www.linkedin.com/company/ixie-gaming/?originalSubdomain=in
https://www.instagram.com/ixiegaming/
https://ixiegaming.com/
mailto:info@ixiegaming.com

